Ultis[™] Dry² Strength Technology

ADVANCING STRENGTH FOR PAPER AND PACKAGING

1

Today's Purpose

INTRODUCE Ultis[™] Dry² Strength Technology : Nalco Water's Dry product Dry strength industry-leading innovation in strength agents

DEMONSTRATE how Ultis[™] Dry² Strength Technology: can improve your mill's productivity

SHOWCASE Ultis[™] Dry² Strength Technology in Action: Case Study

Motivation for Increasing Dry Strength in Paper

More consistent Paper QUALITY

- Allows product to function properly in end use
- Basis weight reduction
 - Maintain strength with less fiber
 - Lower weight packaging cost savings and environmental benefits
- Allows for lower cost fiber/materials
- Increased machine speed/production through improved dewatering (reduce refining).

Methods of Increasing Paper Strength

- Mechanical/Operational
 - Increase the weight of the sheet
 - Improve fiber source (recycle vs. virgin)
 - Increase refining of the fibers
 - All come at a cost and may decrease operational efficiency
- Chemical dry strength aid
 - Water soluble polymers (+ / /)
 - Adsorb to fiber surface, increase fiber/fiber strength and/or fiber bond area.
 - Examples: starch, modified polyacrylamide

Challenges of applying strength polymers

- Cost-effectively generating strength in recycled board and packing grades
 - Strength agent efficacy
- Low-solids solution polymers
- Short shelf life
 - Shelf life dependent on environmental conditions
- Chemical logistics/management

Example: Recycled Board Producer

- 2,300 tons/day across several paper machines.
- Dosing around 5 lb/ton conventional strength agent (9.25% actives) to achieve strength and productivity targets.

Voice of Customer

Productivity:

- Increase strength to run faster make more paper.
- Re-use of raw material

Sustainability

- Water and energy reduction
- Cost optimization Grade development
 - Light-weight. Sell more area with same properties.
 - Up-grade.
 - Printability.
 - Use OCC to match performance of virgin liner.

Strength is the major driver or hurdle to achieving these.

Dry Strength Additive Benefits

Basis Weight Reduction	Increased Production	Energy & Water Conservation	Fiber Substitution	Grade Development
 Light- Weighting <u>Higher</u> <u>strength at</u> <u>lower basis</u> <u>weights</u> 	 Increase drainage / dewatering Less refining Eliminate Size Press 	 Lower steam demand Less refining energy Reduced sewer losses 	 More OCC High ash recycle Strength with recycle fiber 	 Consistent strength results New higher strength grade

Dry Strength Additive Benefits

Carbon Footprint	Capital	Quality	Environmental	
 Lower Freight to ship chemical 	 Avoid capital expenditures 	 Reduce returns / complaints due to low test 	Lower VOCLower BOD's	
 Lower Freight to ship boxes Less Fiber / MSF 		 More uniform strength test 	Increase waste recycle	
Lower energy				

Ultis[™] Dry Technology

- A dry powder strength agent developed to address the needs of the recycled board and packaging industry.
 - Unlimited shelf life
 - Improved handling and storage
 - 5 10x more concentrated
 - Effective at building strength in board and packaging grades
 - Regulatory compliant
- Significant technical challenge to deliver a dry polymer in the molecular weight range of a paper strength agent.

Ultis[™] Dry² Strength Technology

Ultis[™] Dry² Strength Technology provides recycled paperboard and packaging manufacturers higher levels of strength in a novel form improving logistics, safety, customer product quality and improved cost of operation.

Yearly savings based on 1000 ton/day Paper Mill Production

Ultis[™] Dry² Strength Technology from Nalco Water: Advancing the Science of Paper Strength

Provides up to 15% more strength than traditional products Delivered as a Highly concentrated, solid product

n

Polymer-based chemistry

Maintains consistency with a ONE-year plus shelf life

Overview of Plant Results

CASE STUDY 1

North America Linerboard & Medium

Situation:

A 100% recycled paperboard mill was producing paper at a heavier weight than target to meet their strength targets. **Results:**

PROFITABILITY

INCREASED

profitability by

13

\$4.9M / year

REDUCED refiner energy by 2.2M kWs

per year,

Solution:

The mill implemented Ultis[™] Dry² Strength Technology to meet their strength targets more efficiently.

NALCS Water

Strength Testing: Ring Crush

- ▲ Strength increase observed in both MD (13%) and CD (14%) ring crush.
- ▲ Strength decreases after the chemistry is removed from the machine.
- ▲ Short break (caused by equipment rope break) between reels 18 and 19.
- ▲ Numbers are indexed to basis weight, then multiplied by the BW average.

Strength Testing: Burst

- ▲ 19% increase measured in burst strength.
- Machine optimized for burst (concora) performance for this grade.

Strength Testing: Tensile Index

- Increase in both CD (14%) and MD (12%) tensile index observed.
- Strength decreases after METRIX Ultis is removed from the machine.
- ▲ All values indexed to basis weight.

Overview of Plant Results

Latin America Linerboard & Medium

CASE STUDY 2

Situation:

A 100% recycled paperboard mill desired to improve the productivity and strength quality of their production

Results:

Solution:

The mill implemented Ultis[™] Dry² Strength Technology to meet their strength targets more efficiently and provided an 81% Return on their investment

Results - Properties

Results Production

Overview LA Case

Trial Goal: Increased or maintain Ring crush and/or CFC, increasing productivity and decreasing the amount of chemical used.

Competitive Program: GPAM 15 kg/ton, retention aid hmw (+) 1.3 kg/ton, AKD 7 kg/ton

Nalco Program: 63888 (Ultis) 1.9 kg/ton machine chest pump, 61067 0.3 kg/ton before screen, AKD 5.0 kg/ton pre-fan-pump.

Results: RC and CFC maintain the same values, productivity increased from 4.1 to 4.3 ton/hr, basis weight decrease from 160 g/m2 to 157 g/m2, chemical dosage decreased.

Key Learning: Getting the best strength values, the 63888 was change from before the screen to the machine chest pump.

eSaving\$ Mill saved \$292,452 Usd/year producing 3 days per week high basis weight liner.

Chemical savings \$181,256.00, productivity \$111,197.00

Case # 3

Product Trial: Ring Crush Results

- ▲ 36 hours total run time, no paper breaks or runnability issues.
- ▲ Positive impact on all strength tests.
- Increased retention observed (FPR increased 5%), reduced other chemical dosages (ASA)

Case 3.- Latin America

🛚 Water

Overview of Plant Results

Asia Pacific Corrugated Medium

CASE STUDY 4

Situation:

An Asia Pacific 100% recycled paperboard mill desired to improve the strength quality of their production, increase productivity and improve the total cost of operation

Results:

Solution:

The mill implemented Ultis[™] Dry² Strength Technology to meet their strength targets more efficiently and provided an 101% Return on their investment

Sustainability Impact

90% FEWER Product Deliveries

REDUCED BOD/COD in Wastewater

INCREASE PRODUCTIVITY & DECREASE TCO

Learn how Ultis[™] Dry² Strength Technology can **work for your mill**

